

Dialogue Social Science Review (DSSR)
www.thedssr.com

ISSN Online: 3007-3154
ISSN Print: 3007-3146

Vol. 3 No. 6 (June) (2025)

97

A Hybrid Framework For Accurate Software Effort
Estimation In Agile And Traditional Development

Models

Jahanzaib Ahmed Khan
Assistant Manager, Meezan Bank, Email: jahanzaibkhan169@gmail.com

Mohammad Ayub Latif (Corresponding Author)
Assistant Professor, CoCIS, KIET, Email: malatif@kiet.edu.pk

Muhammad Khalid Khan
Professor and Dean CoCIS, KIET. Email: khalid.khan@kiet.edu.pk

Muhammad Dawood Akram
Senior Lecturer, Department of Computer Science, Bahria University Lahore
Campus. Email: m.dawood@bahria.edu.pk

 Rizwan Khalid
Senior Lecturer, Department of Computer Science, Bahria University Lahore
Campus. Email: Rizwankhalid.bulc@bahria.edu.pk

Syed Mubashir Ali

Associate Professor, Department of Computer Science, Bahria University, Lahore
campus, Pakistan, Email: syedmubashir.bulc@bahria.edu.pk

Abstract
The success of software development projects depends on accurate software
effort estimation. Plan-driven frameworks frequently employ conventional
models like COCOMO and Function Point Analysis (FPA), however these models
frequently lack the adaptability needed to change with the needs of a project.
Although agile estimation methods, such as T-shirt sizing and Story Points, offer
flexibility, they may compromise early accuracy. The hybrid estimating
framework proposed in this paper combines adaptive and deterministic
techniques to increase accuracy while preserving adaptability. A major
government project and a mobile application development endeavor serve as two
case studies used to assess the framework. The findings show that when
conventional and agile estimate techniques are combined, accuracy and
flexibility are improved over when either strategy is used alone. Performance
indicators including usability, accuracy, and adaptability are examined. Finally,
guidelines for selecting appropriate estimation techniques based on project
characteristics are presented.

Keywords: Software Effort Estimation, Agile, Traditional, Hybrid Framework,
COCOMO, Story Points, Software Engineering

1. Introduction:
One of the most important elements of software engineering is software effort
estimation, as it determines whether software projects will succeed or fail.

http://www.thedssr.com/
mailto:jahanzaibkhan169@gmail.com
mailto:malatif@kiet.edu.pk
mailto:khalid.khan@kiet.edu.pk
mailto:m.dawood@bahria.edu.pk
mailto:Email:%20Rizwankhalid.bulc@bahria.edu.pk
mailto:syedmubashir.bulc@bahria.edu.pk

Dialogue Social Science Review (DSSR)
www.thedssr.com

ISSN Online: 3007-3154
ISSN Print: 3007-3146

Vol. 3 No. 6 (June) (2025)

98

Establishing realistic expectations demands precise estimates, which provide
adequate resource allocation and eventually the delivery of the software product
within the scheduled time and budget. Inaccurate effort/cost estimation can
result in delays, over expenditure, and even total project failure and is a vital area
of concern for software project managers and development teams [1], [2] [3] ,
[4]. The methodology of estimating the effort of software development has
changed drastically since years ago, with numerous techniques emerging to suit
the purposes of different paradigms in software development.[5],[6]
The intricacy and intrinsic uncertainty of software development processes make
effort estimation in software engineering challenging [7],[8]. As opposed to
physical engineering, software development is an abstract and intangible process
that usually includes high uncertainty, especially concerning effort, time, and
resource needed[9]. This can complicate the estimation task since software
projects tend to be susceptible to scope change, technology, and user needs
change[10],[11]. Traditional methods of software development, such as the
Waterfall model are usually complained about because they are not very
adaptable in managing such changes, and thus can pose problems in estimating
effort[12],[13]. More recent methodologies such as agile have, therefore, come in
to overcome such shortcomings through emphasis on flexibility, iterative
development, and constant stakeholder input, hence presenting an alternative
way of estimating effort and costs [14], [15].
The objective of this paper is to identify and contrast the different effort/cost
estimation methods applied in the classical and agile paradigms for
development. Classical methods like COCOMO (Constructive Cost Model) and
Function Point Analysis (FPA) model, stress initial planning, exhaustive
requirements analysis, and utilization of past data to deliver organized estimates
[16], [17], [18]. These models have been extensively applied in software
engineering, especially in those industries with highly regulated environments,
where thorough planning and rigid follow-up of project schedules and budgets
are essential. Nonetheless, their dependency on well-defined project
specifications and early-stage commitment tends to result in difficulties when
presented with dynamic project requirements or changes not previously
anticipated [21], [22].
Contrarily, agile methodologies such as Extreme Programming (XP), Scrum, and
Kanban has emerged as more flexible means of software development [23], [24].
Agile methodologies are characterized by short, iterative development cycles
(sprints), regular releases, and continuous communication with stakeholders and
therefore are more flexible and adaptive to change [25]. This adaptability during
development also finds its manifestation in a change in cost estimation
methodologies. Within Agile projects, the application of measures such as Story
Points and T-shirt sizing has become more common because they are simple,
easy to execute, and consistent with Agile Principles like iterative delivery and
continuous improvement[26],[27]. These practices are often less rigorous and
more flexible than conventional methods, permitting development teams to
rapidly update estimates according to up-to-date progress and changing project
requirements [28].
While conventional effort estimation techniques such as FPA and COCOMO have
been demonstrated to be effective in estimating effort and costs for large and
clearly defined software projects, they tend not to perform well in agile settings

http://www.thedssr.com/

Dialogue Social Science Review (DSSR)
www.thedssr.com

ISSN Online: 3007-3154
ISSN Print: 3007-3146

Vol. 3 No. 6 (June) (2025)

99

where the requirements and scope can change over the course of the project life
cycle [29]. Conversely, agile estimation methods, although more adaptable, tend
to lack the accuracy and reliance on historical data offered by conventional
methods [30]. Consequently, the choice of the right cost estimation approach
relies on various factors that involve the scope, size, complexity of the project, as
well as the development methodology under use [31]. Hence, the knowledge of
the advantages and disadvantages of conventional as well as agile estimation
approaches is essential to arrive at intelligent decisions and obtain accurate
predictions of cost [32].
This work seeks to give an in-depth analysis of such cost estimation methods, a
comparison of their efficiency, simplicity, flexibility, and usability in different
software project types. It analyzes the theory behind such estimation methods
and then the practical use by industry case studies and the views of experts.
Through examining both conventional and agile methods of software effort/cost
estimation, it provides insightful analysis regarding how various estimation
methods can be utilized in various project settings. The ultimate goal is to
provide a set of recommendations for the most appropriate effort/cost estimation
method with consideration for the specific needs and constraints of each project.
This research paper's structure is designed to provide readers a thorough grasp
of software effort/cost estimates across various development frameworks. The
relevant work and literature study are presented in Section 2, which also
highlights current approaches and research pertinent to cost estimate in both
traditional and agile systems. By highlighting knowledge gaps and providing
background information for the topic, this part lays the groundwork for the
remainder of the paper. Section 3 discusses the key contributions of this study.
Section 4 examines traditional models, their advantages, and disadvantages as it
relates to cost estimating techniques inside traditional software development
frameworks. Effort estimate in agile development frameworks is examined in
section 5, which also examines the impact of agile approaches on estimating
precision and flexibility. Section 6 offers useful insights by discussing two
different case studies where the HCEF framework can be utilized and finally
section 7 concludes the paper by identifying the future directions.

2. Related Work:
Agile approaches, which offer iterative, adaptive, and customer-centered
methodologies that contrast sharply with more traditional linear project
management models, have become a standard component of modern software
development. Agile's adaptability to shifting user needs and project scope is
perhaps one of its fundamental principles. Techniques like continuous re-
estimation and effective scope management, which have been the subject of
extensive research and application, are largely responsible for this flexibility.

 Continuous Re-estimation in Agile: Estimating is a one-time task at
the beginning of a project in traditional project management. Agile approaches
such as Scrum and XP, on the other hand, place a strong emphasis on ongoing
re-estimation in order to better track progress and adjust to evolving needs [2].
In order to align estimates with current reality, [4] argue for iterative sprint
planning, pointing out the shortcomings of static estimation. This method
guarantees that expectations align with stakeholder feedback, task difficulty, and
available resources.

http://www.thedssr.com/

Dialogue Social Science Review (DSSR)
www.thedssr.com

ISSN Online: 3007-3154
ISSN Print: 3007-3146

Vol. 3 No. 6 (June) (2025)

100

Our project's team was better able to adjust to changing priorities and user
feedback by using iterative estimation. The usefulness of agile principles was
demonstrated by better scheduling, resource allocation, and stakeholder
alignment when effort was re-estimated at each sprint.

 Managing Scope Flexibility: One major benefit of agile is its scope
management flexibility, which allows teams to adjust to shifting customer
requirements without sacrificing budget or timeline. Agile guarantees constant
attention to high-value features through the use of prioritized backlogs and
iterative delivery. This flexibility, however, can result in scope creep if improperly
managed, putting deadlines and profitability at risk. To reduce this risk, [3]
stresses stringent prioritizing, regular stakeholder engagement, and a distinct
product vision.
Agile's adaptability enabled the team to add new requirements to a project, but if
changes were left unchecked, there was a chance that the original objectives
would be lost. Scope flexibility can be turned into a strength rather than a
drawback when properly handled.

2.1 Suggestions for Further Enhancement
As it enables project managers to effectively plan, schedule, and resource,
software cost estimating is a critical activity in the software development process.
Many studies have examined different cost estimation techniques, focusing on
both traditional and agile approaches. Traditional estimating models like
COCOMO and Function Point Analysis (FPA) are popular for their systematic,
quantitative methodology to estimate the effort of software development [1]. For
effort, cost, and schedule estimation, these models use historical data and pre-
defined criteria. In contrast, agile estimating techniques like Story Points and T-
shirt sizing are flexible and dynamic, especially in cases where the requirements
keep evolving fast. [2]
While comparing Agile and conventional cost estimation methods, [3] point out
that conventional methods offer greater accuracy in the case of stable and well-
known requirements. But conventional methods do not perform well where the
environment is dynamic and where the scope change is common [2] and it
supports agile estimation techniques, highlighting their flexibility and ease in
iterative development, when customer response and feature modification are
usual.

2.2 Data and Metrics
Reliable data and appropriate metrics form the backbone of accurate software
effort estimation, in both traditional and agile environments, the use of historical
project data, performance indicators, and well-defined metrics is essential to
improve estimation accuracy.
In traditional estimation methods such as COCOMO and Function Point Analysis
(FPA), quantitative data plays a central role. These methods rely heavily on:
Historical project data (e.g., effort hours, size in KLOC or Function Points)

 Productivity rates

 Complexity factors

 Cost drivers such as team capability, tools, and required reliability
These inputs help produce detailed, formula-based estimates. Metrics such as
effort per function point or person-hours per KLOC are commonly used to

http://www.thedssr.com/

Dialogue Social Science Review (DSSR)
www.thedssr.com

ISSN Online: 3007-3154
ISSN Print: 3007-3146

Vol. 3 No. 6 (June) (2025)

101

benchmark performance and predict future project needs. In contrast, agile
estimation techniques make use of more abstract and team-specific metrics, such
as:

 Story Points: a relative measure of effort, complexity, and risk for each
user story.

 Velocity: the average number of story points completed in a sprint, used
to forecast future progress.

 Burn-down and burn-up charts: visual tools that track remaining
work against time.

Agile teams may also use cycle time, lead time, and throughput as operational
metrics to monitor and adjust their estimates dynamically throughout the project
lifecycle.
One key challenge in both approaches is the availability and accuracy of the
underlying data. While traditional methods often benefit from well-documented
legacy project data, agile methods rely on consistent team performance and
accurate backlog grooming to maintain velocity metrics. The subjective nature of
some agile metrics, like story points, may introduce variability, especially across
different teams or organizations.
Nevertheless, combining the strengths of both methods using historical data-
driven insights from traditional models and the real-time adaptability of agile
metrics can significantly enhance the reliability and responsiveness of software
cost estimation practices.

2.3 Effect of Altering Requirements on Estimation

 Derivative Analysis: A direct comparison of the two approaches
(Waterfall and Agile) may be beneficial, particularly emphasizing the variance in
the estimation [4]. Contends that the changing scope in Agile projects can result
in rework and scope creep, which makes it ever harder to estimate cost.
Analogously, [1] explains how the inflexibility of conventional methods, such as
COCOMO, cannot handle late-stage adjustments, which causes deadlines to be
missed and exceeding budgets [5]. It is also known that although Agile's iterative
approach supports changes in requirements, it can also create unrealistic cost
forecasts since early estimates do not entirely reflect subsequent adjustments.
This is especially concerning for projects such as the development of a mobile
application, where feedback from users may require new features or
modifications to existing ones, thereby making the prediction of effort difficult.

 Utilization of Historical Data in Estimation Models: Traditional
models such as COCOMO depend largely on historical data to predict the amount
of money and effort required in software development. [1]. [6] indicating that the
application of traditional models is more challenging under conditions of
unreliable historical data, especially for new projects or technology, for instance,
historical data may not be available for estimation of costs for projects
incorporating new technologies like block chain or AI, and hence, it is not
possible for conventional approaches to give an accurate estimate. Agile
estimation methods, however, depend less on historical data. They concentrate
on relative estimates and scale using changing project data [2]. But if not
monitored constantly, it can lead to less accurate predictions and wastage of
resources.

http://www.thedssr.com/

Dialogue Social Science Review (DSSR)
www.thedssr.com

ISSN Online: 3007-3154
ISSN Print: 3007-3146

Vol. 3 No. 6 (June) (2025)

102

 Software Estimation Bias and Its Consequences: Software
estimating bias is yet another problem common to both traditional and agile
approaches. Biases that stem from humans like optimism bias and
overconfidence could influence the accuracy of cost estimates, as per [7]. For
example, [1] explains how project managers tend to underestimate work
complexity based on optimism bias in conventional models. In [2] points out the
dangers of overconfidence bias in Agile methodologies, whereby team members
exaggerate their capacity to deliver work within a certain sprint and therefore
underestimate resources and delays. Errors in cost estimates because of bias can
lead to higher costs for the project and delayed project completion, affecting both
project success and stakeholder satisfaction.

 Comparison of Cost Estimation Methods: The following table is a
summary of major differences between traditional agile estimation methods on
different criteria: Table 1 shows the comparison of traditional and agile
estimation techniques.

Criteria Traditional Estimation
(e.g., COCOMO, FPA)

Agile Estimation (e.g.,
Story Points, T-shirt
sizing)

Accuracy Higher accuracy in stable
environments with well-
defined requirements
(Boehm, 1981) [1].

Lower accuracy, especially
in early stages.
Adaptability allows for
evolving estimates (Cohn,
2005) [2]. Flexibility Limited flexibility; changes in

scope often require re-
estimation [7].

Highly flexible;
accommodates changes
throughout development
[2].

Ease of Use Requires detailed upfront
planning and complex
calculations [6].

Easier to implement with
less upfront documentation
[2].

Dependence on
Historical Data

Strong reliance
on historical data from
similar projects [1].

Minimal reliance on
historical data focusing on
team experience and
relative Criteria Traditional Estimation (e.g.,

COCOMO, FPA)
Agile Estimation (e.g.,
Story Points, T-shirt sizing)
estimates [2]. Handling of Changing

Requirements
Struggles to accommodate
late changes, leading to cost
overruns [5].

Built to handle changing
requirements iteratively,
though frequent scope
changes can still lead to
unpredictability
(McConnell, 2006) [4]. Bias Impact Prone to optimism bias and

complexity underestimation
[1].

Susceptible to
overconfidence bias in
sprint estimates [2]. Table 1: Comparison of Traditional and Agile Estimation Techniques

 Solving Estimation Problems: Some solutions have been offered to
mitigate the intrinsic problems of software cost estimation. To achieve a balance
between flexibility and accuracy, [5],[25] recommends the adoption of a hybrid
framework that integrates aspects of the conventional and agile approaches.
Agile projects can, for example, employ coarse-grained classical models initially
to obtain an estimate of the scope and cost of the project prior to converting to

http://www.thedssr.com/

Dialogue Social Science Review (DSSR)
www.thedssr.com

ISSN Online: 3007-3154
ISSN Print: 3007-3146

Vol. 3 No. 6 (June) (2025)

103

more flexible agile methods once the project is underway and more information
has become available.

3. Key Contribution of the Study
The following key findings were derived from an in-depth analysis of traditional,
agile, and hybrid software effort estimation techniques and its salient features
are highlighted in the sub-sections of this section:
3.1 Improved Accuracy through Hybrid Framework:
The proposed hybrid framework combines the early-stage precision of traditional
estimation models with the adaptability of agile methods. This integration
enhances overall accuracy in cost and effort prediction across varying project
environments [1], [2], [5].
3.2 Context-Driven Estimation Selection:
The suitability of an estimation method is dependent on multiple factors such as
project scope, complexity, requirement stability, and team dynamics. The hybrid
model allows flexible adaptation based on these parameters [3], [4], [6].
3.3 Reduced Risk via Continuous Re-estimation:
Agile estimation techniques, such as story points and velocity-based forecasting,
enable iterative updates that reflect ongoing changes in project scope and
progress, thereby minimizing risks associated with fixed early estimates [2], [5].
3.4 Mitigation of Estimation Bias:
Both traditional and agile techniques are prone to human bias, optimism bias in
traditional models [1] and overconfidence in agile methods [2][15]. A hybrid
framework, through structured planning and continuous feedback, helps
mitigate these biases [7],[20].
3.5 Strategic Use of Historical Data:
Traditional methods like COCOMO rely on extensive historical data for accurate
cost modeling [1], while agile methods depend more on relative, team-based
estimation [2]. A hybrid approach effectively utilizes historical data in the initial
phases and agile metrics during development [6].
3.6 Empirical Validation through Case Studies:
The application of the hybrid estimation framework to two case studies, a
government project and a mobile app development project, demonstrated
superior performance in accuracy, usability, and adaptability compared to
standalone approaches [4], [8],[13].
3.7 Guidelines for Technique Selection:
Based on comparative analysis and empirical evidence, the study provides
practical guidelines for selecting estimation methods based on project
characteristics such as development methodology, requirement volatility, and
stakeholder involvement [5], [9].

4. Software Cost Estimation in Conventional Development
Frameworks
4.1 Introduction of Waterfall Model
One of the earliest software development methodologies, the Waterfall model is a
systematic, sequential process for project development. Every phase like
collection of requirements, design, coding, testing, and maintenance has to be
completed before proceeding to the next, so its design is very rigid. It is most
suited to projects with well-defined requirements at the beginning that will not

http://www.thedssr.com/

Dialogue Social Science Review (DSSR)
www.thedssr.com

ISSN Online: 3007-3154
ISSN Print: 3007-3146

Vol. 3 No. 6 (June) (2025)

104

change [1].

Figure 1. Waterfall Software Development Model

4.2 Suggested Hybrid Cost Estimation Framework (HCEF)
The aim of the suggested Hybrid Cost Estimation Framework (HCEF) is to merge
the formal precision of conventional estimation methods with the elasticity and
responsiveness of agile estimation methods. The framework captures the
weakness of both methods through an added layer model that provides robust
initial estimation and ongoing improvement over the project duration.
The HCEF functions in three sequential and iterative layers:
Layer 1: Initial Estimation Layer (Conventional Techniques)
Purpose: Create a planning phase baseline cost and schedule estimate.
Techniques Employed: Any techniques like Function Points, COCOMO etc. that
gives the effort in persons-month
Output: A quantified structured estimate in person-months and initial resource
allocation.
Layer 2: Adaptive Estimation Layer (Agile Techniques)
Purpose: Improve the cost estimate with the project execution based on agile
metrics.
Techniques Used: Story Points: Allocated to user stories in sprint planning.
Sprint velocity is applied for calculating capacity and estimation of completion
time.
Output: Enhanced delivery forecast and effort estimate from real-time team
performance.
Layer 3: Continuous Refinement Layer (Analytics and Feedback
Integration)
Purpose: Continuously refine cost and schedule estimates using data analytics,
performance trends, and stakeholder feedback to ensure alignment with project
goals and evolving conditions.
Techniques Employed:

http://www.thedssr.com/

Dialogue Social Science Review (DSSR)
www.thedssr.com

ISSN Online: 3007-3154
ISSN Print: 3007-3146

Vol. 3 No. 6 (June) (2025)

105

 Earned Value Management (EVM): To monitor project performance
in terms of cost and schedule variances (CPI, SPI).

 Trend Analysis: Use historical sprint and release data to identify patterns
in velocity, scope creep, or estimation accuracy.

 Burndown/Burnup Charts: Visual tools to track progress and predict
remaining effort.

 Feedback Loops: Incorporate customer, stakeholder, and team feedback
to adjust priorities and resource allocation.

Output:
 Continuously updated forecasts based on actual performance
 Early warnings for budget or schedule risks
 Data-driven decisions for mid-course corrections
The table 2 shows the HCEF functions in three sequential and iterative layers
and figure 2 shows the HCEF framework. Table 3 shows the comparative

advantages of the HCEF framework.

Table 2: HCEF functions in three sequential and iterative layers

Figure 2: The hybrid framework

Feature Traditional
Methods

Agile Methods HCEF (Proposed)

Layer Purpose Techniques Output
Layer 1: Initial
Estimation

Establish baseline
using structured,
historical data

FPA, COCOMO
etc.

Initial estimate in
person-months,
resource plan

Layer 2: Adaptive
Estimation

Improve estimates
with execution
metrics

Story Points,
Sprint Velocity

Iterative effort and
delivery forecast

Layer3:Continuous
Refinement

Real-time
adjustment using
analytics and
stakeholder input

EVM,
Trend Analysis,
Charts, Feedback
Loops

Updated forecasts,
risk alerts,
informed
adjustment actins

http://www.thedssr.com/

Dialogue Social Science Review (DSSR)
www.thedssr.com

ISSN Online: 3007-3154
ISSN Print: 3007-3146

Vol. 3 No. 6 (June) (2025)

106

Accuracy in
Initial
Estimation

High – Uses models
like FPA and COCOMO
II for early structured
estimation.

Low – Estimations
are relative and less
precise at project
start.

High – Combines
traditional baseline
(Layer 1) with Agile
refinement (Layer 2).

Adaptability
to Changes

Low – Rigid structure
makes it hard to
accommodate evolving
scope.

High – Agile
supports iterative
requirement
changes.

High – Agile layer
enables flexible
updates during
execution.

Sprint-
Level
Tracking

No – Focuses on
overall milestones
rather than iterative
progress.

Yes – Uses sprint
metrics like story
points and velocity.

Yes – Sprint data in
Layer 2 improves
tracking and forecast.

Historical
Data Use

Required – Needed to
calibrate models like
COCOMO.

Not Needed –
Estimates are based
on current team
dynamics.

Optional – Layer 1
benefits from historical
data, Layer 2 adapts in
real time.

Suitable for
Dynamic
Projects

Poor Fit – Not flexible
for frequently changing
requirements.

Excellent – Built for
adaptive, evolving
scope.

Excellent – Supports
changing scope with
initial structure and
Agile updates.

Suitable for
Fixed-Scope
Projects

Best Fit – Structured
estimates align with
defined scope.

Weak Fit – Agile
may introduce
overhead in fixed
environments.

Balanced Fit –
Provides initial
structure with
flexibility for change if
needed.

Table 3: Comparative advantages of the HCEF
4.3 Mathematical Representation of HCEF:
The Hybrid Cost Estimation Framework (HCEF) integrates traditional
estimation, agile execution data, and real-time feedback to continuously refine
project effort forecasts.
Main Estimation Formula
Let:

 Et = Total estimated effort at time t (in person-months)
 E₀ = Initial estimate (Layer 1)
 At = Agile-based adjustment (Layer 2)
 Ft = Real-time performance adjustment (Layer 3)

Then the overall effort estimation becomes:
Et = E₀ + At + Ft (Equation 1)
Layer 1: Initial Estimation (E₀)
This layer establishes the baseline estimate using any traditional method. The
value of E₀ is in person-months.
Accepted Estimation Methods:

 COCOMO 81: E₀ = a × (KLOC)^b
 Function Point Analysis: E₀ = FP × Productivity Rate
 Expert judgment or historical analogy

The estimator may choose any of these methods based on project type, team
maturity, or organizational standards.
Layer 2: Agile-Based Adjustment (At)

http://www.thedssr.com/

Dialogue Social Science Review (DSSR)
www.thedssr.com

ISSN Online: 3007-3154
ISSN Print: 3007-3146

Vol. 3 No. 6 (June) (2025)

107

This layer adjusts the original estimate based on agile metrics such as story
points and team velocity.

Formula:
At = ((S / V) × D × T) / W – E₀ (Equation 2)
Where:

 S = Total story points
 V = Team velocity (story points per sprint)
 D = Duration of each sprint (in weeks)
 T = Team size (number of full-time members)
 W = Average work weeks per month (typically 4.33)
 E₀ = Initial estimate in person-months

Interpretation:
 If At > 0, Agile projections indicate more effort than initially planned.
 If At < 0, Agile progress suggests less effort is needed than the baseline.
 If At = 0, Agile delivery is aligned with the initial estimate.

Example 1: Negative Adjustment (At < 0)
Inputs:

 S = 150, V = 10, D = 2, T = 3, W = 4.33, E₀ = 25
Steps:

 Number of sprints = S / V = 15
 Weeks = 15 × 2 = 30
 Person-weeks = 30 × 3 = 90
 Person-months = 90 / 4.33 ≈ 20.78
 At = 20.78 – 25 = –4.22 person-months

The Agile projection requires 4.22 fewer person-months than initially
estimated.
 Example 2: Positive Adjustment (At > 0)
Inputs:

 S = 200, V = 10, D = 2, T = 4, W = 4.33, E₀ = 27
Steps:

 Number of sprints = 20
 Weeks = 20 × 2 = 40
 Person-weeks = 40 × 4 = 160
 Person-months = 160 / 4.33 ≈ 36.96
 At = 36.96 – 27 = +9.96 person-months

Agile progress indicates higher effort than the initial estimate.
Layer 3: Continuous Refinement Using EVM (Ft)
This layer makes real-time corrections based on Earned Value Management
(EVM) indicators.
Formula:
Ft = α × (1 – CPI) + β × (1 – SPI) (Equation 3)
Where:

 CPI = Cost Performance Index = EV / AC
 SPI = Schedule Performance Index = EV / PV
 α = Weight assigned to cost impact
 β = Weight assigned to schedule impact

Interpretation:

http://www.thedssr.com/

Dialogue Social Science Review (DSSR)
www.thedssr.com

ISSN Online: 3007-3154
ISSN Print: 3007-3146

Vol. 3 No. 6 (June) (2025)

108

 If CPI and SPI are below 1.0, the project is over budget or behind
schedule.

 Subtracting from 1 reveals the degree of inefficiency.
 Multiplying by α and β converts that inefficiency into person-month

impact.
Example of Ft Calculation
Given:

 CPI = 0.90
 SPI = 0.85
 α = 5
 β = 5

Calculation:
 Ft = 5 × (1 – 0.90) + 5 × (1 – 0.85)
 Ft = 5 × 0.10 + 5 × 0.15 = 0.5 + 0.75 = 1.25 person-months

Ft reflects the effort increase needed due to cost/schedule slippage.
Final Estimation Example
Let:

 E₀ = 27
 At = –4.22
 Ft = 1.25

Et = E₀ + At + Ft = 27 – 4.22 + 1.25 = 24.03 person-months

The layer summary of each layer is shown in table 4.
Layer Component Input Output Interpretation
Layer
1

E₀ LOC / FP /
Expert

Initial
Estimate

Starting baseline

Layer
2

At Agile metrics Adjustment Reflects Agile speed vs.
plan

Layer
3

Ft CPI, SPI Adjustment Reflects real-world project
conditions

Table 4: Layer summary of each layer of HCEF

5. Effort Estimation in agile development frameworks:
The HCEF equation provides a dynamic estimate that improves over time:
Et = E₀ + At + Ft (Equation 1)
It blends traditional accuracy, agile responsiveness, and real-time analytics into
one evolving formula.

Software Cost Estimation in Agile Development Frameworks: Agile
methodologies are a move away from inflexible, sequential development
processes towards more adaptive, iterative cycles. Agile prioritizes responding to
change, teamwork, and customer input along the way throughout the
development process. Methodologies such as Scrum, Kanban, and Extreme
Programming (XP) stress short development cycles (sprints) where features are
incrementally delivered, enabling stakeholders to examine and modify
requirements in real-time [1]. Because of Agile focus on constant iteration and
change, traditional cost estimation methods like COCOMO and FPA may not be
suitable. Instead, agile projects require more flexible, less formal estimation
techniques that can evolve with the project’s needs [2].

http://www.thedssr.com/

Dialogue Social Science Review (DSSR)
www.thedssr.com

ISSN Online: 3007-3154
ISSN Print: 3007-3146

Vol. 3 No. 6 (June) (2025)

109

5.1 Story Points
In Agile methodologies, Story Points serve as a unit of relative estimation for
assessing the complexity, risk, and effort associated with implementing a user
story. Unlike time-based estimation, story points abstract away from hours and
instead represent the multidimensional workload inherent in software tasks [4].
5.1.1 Estimation Process
Relative Sizing Using Fibonacci Scale: Story Points are typically assigned using a
non-linear Fibonacci-based scale (e.g., 1, 2, 3, 5, 8), which captures increasing
uncertainty and nonlinear growth in task complexity [5].
Collaborative Estimation via Planning Poker: During sprint planning, estimation
is performed through a consensus-driven approach such as Planning Poker,
where each team member proposes a point value, followed by rational discussion
and convergence toward a final estimate [6]. This approach mitigates anchoring
bias and promotes estimation consistency.
Sprint Velocity Calculation: Teams track their velocity, defined as the aggregate
story points completed per sprint, to construct an empirical performance
baseline. This velocity metric facilitates capacity planning and supports
probabilistic forecasting of project timelines [7].
5.1.2 Challenges
While Story Points are highly effective for tracking progress and aligning
expectations, they do not provide precise estimates in terms of cost or duration.
The system’s reliance on team experience also means that estimates may vary
widely depending on the team's familiarity with the project domain [8].
5.2 T-shirt Sizing
Another straightforward estimation method frequently employed in agile
projects is t-shirt sizing. To show the relative complexity, tasks are divided into
sizes like XS, S, M, L, or XL. And effort involved. This method is often employed
in the early stages of the project when detailed requirements are still being
clarified [9]. Advantages are as stated under:
• Quick to Implement: T-shirt sizing is an efficient way to estimate work early in
the project lifecycle.
• User-Friendly: Teams find this approach simple and intuitive, especially for
new agile teams.
5.2.1 Challenges
T-shirt sizing can be a decent place to start, but it's not as accurate as other
techniques, which can lead to inaccurate cost estimates for larger Projects or
projects with complex requirements [10].
This table 5 includes the T-shirt size code, T-shirt size, and the estimated
duration range in hours.
T-Shirt Size
Code

T-Shirt Size Estimated Duration Range
(Hours)

XXS Extra Extra small 0 to 15
XS Extra small 1.5 to 4

S Small 4 to 10

M Medium 10 to 20

L Large 20 to 36

XL Extra Large 36 to 50

http://www.thedssr.com/

Dialogue Social Science Review (DSSR)
www.thedssr.com

ISSN Online: 3007-3154
ISSN Print: 3007-3146

Vol. 3 No. 6 (June) (2025)

110

Table 5: T-Shirt Size Mapping Table (With Duration Range)

This table 6 lists the T-shirt size along with its corresponding size code and an
approximate duration in hours as a variation to table 5.
T-Shirt Size T-Shirt Size Code Approx. Duration Hours
Extra Extra small XXS 1
Extra small XS 3
Small S 8
Medium M 15
Large L 28
Extra Large XL 45
Table 6: T-Shirt Size Mapping Table (Without Duration Range)

6. Case Studies
6.1 Government Major Project (Waterfall Model)
6.1.1 Context and Background
Government projects, especially in industries like defense, healthcare, and
infrastructure, tend to adopt highly disciplined approaches such as the Waterfall
model. This is due to the necessity of high documentation levels, compliance with
regulatory requirements, and ensured progress in long-duration, high-risk
projects. The linear, sequential nature of the Waterfall approach is seen as being
best suited to guaranteeing that all development phases which includes the
gathering requirements, design, implementation, verification, and maintenance
are well-planned and carried out.
The project in question entails the design of a healthcare information system
funded by the government. It was a large-scale project that was supposed to
automate patient data management across various modules like patient
registration, electronic health records (EHRs), medical billing, and healthcare
reporting. Being mission-critical in nature, the system was put under various
audits and stringent compliance tests, making the choice of the Waterfall
methodology even stronger.

6.1.2 Cost Estimation Process:
To approximate the project's cost, effort, and time, the development team
employed two widely recognized industry estimation methods:
Function Point Analysis (FPA): The system was decomposed into separate
components in terms of user interactions inputs, outputs, data files, and
interfaces. Each component was given a complexity rating (low, medium, high),
and the function points were counted accordingly. The function points assisted in
quantifying the functionality of the system in a technology-independent manner,
giving an early estimate of the size of the system in function points and then the
effort was calculated in persons-month by using the historical data.
6.1.3 Challenges:
Rigidity of the Waterfall Model: Halfway through development, newer
healthcare regulations necessitated major redesigns of the system's architecture.
But as the architecture and design phases had already been accomplished under
Waterfall's linear framework, such changes were hard to make without going
back on previous phases. This inflexibility resulted in project delays, escalated
costs, and a domino effect of needed revisions around the system.

http://www.thedssr.com/

Dialogue Social Science Review (DSSR)
www.thedssr.com

ISSN Online: 3007-3154
ISSN Print: 3007-3146

Vol. 3 No. 6 (June) (2025)

111

Incorrect Early Estimates: Early estimates, premised on initial assumptions
regarding complexity, did not account for the changing regulatory environment
or unexpected technical issues. Consequently, resource and time requirements
were actually much greater than originally estimated, leading to the need for
rework and extra personnel.
6.1.4 Lessons Learned:
Project Management Flexibility: The project highlighted the requirement
for more flexibility in the estimation and planning phases. While the Waterfall
model can be applied to projects with stable requirements, the changing
landscape of healthcare rules exposed its shortcomings. Implementation of agile
aspects, including iterative feedback loops, would have helped enhance
flexibility.
Continuous Re-estimation: The project emphasized the need for continuous
estimation throughout the life cycle. Constantly revisiting and adjusting
estimates based on new information or risks would have allowed for improved
resource allocation, risk management, and stakeholder communication.

6.2 Mobile App Development (Agile Methodology):
6.2.1 Context and Background:
Within high-speed and fast-changing sectors like mobile app development,
organizations favor agile methodologies more and more, especially scrum. Agile
adaptive, inclusive, and elastic features suit it particularly well for projects
involving changing requirements and constant updates. The mobile app
landscape, with the changing tastes of users and ongoing technological
progression, requires development methodologies that are capable of quickly
adjusting and changing.
6.2.2 Project Overview:
This case study highlights a fitness mobile app created by a startup whose
mission is to enable users to define goals, monitor fitness progress, and obtain
personalized workout and nutrition programs. The app further incorporated
social functionality through which users could share success and connect.
Because of market competition, the startup focused on fast delivery, user-led
development, and frequent updates.
First, the team employed T-shirt sizing to make an estimate of the relative
complexity of the features. The tasks were allocated as XS, S, M, L, or XL,
allowing for rapid prioritization without the need for detailed specifications
which is perfect at this stage when requirements were still changing.
As development went on and features were more clearly defined, these sizes were
evolved into finer-grained story points (with Fibonacci values like 1, 2, 3, 5, etc.)
to enhance progress tracking and sprint planning.
6.2.3 Challenges:
Uncertain Requirements:
When the project started, the client's vision of the app's features was not very
clear. This made the initial estimates unclear and the feature set keep changing.
The necessity for iterative, user feedback-based development brought in fresh
requirements during the project, making it difficult to predict efforts and costs.
Iterative Development and Estimation: Agile iterative approach to
development meant that cost and effort projections were revisited in every sprint.
While this kept the team adaptable to emerging insights and user requirements,

http://www.thedssr.com/

Dialogue Social Science Review (DSSR)
www.thedssr.com

ISSN Online: 3007-3154
ISSN Print: 3007-3146

Vol. 3 No. 6 (June) (2025)

112

it created difficulties in long-term forecasting, particularly where new features
were introduced halfway through development.
Stakeholder Impact: Agile focused on ongoing interaction with stakeholders,
such as product owners and early adopters. This helped ensure that development
stayed in sync with market expectations. But it also meant that feedback loops
might initiate scope changes, exerting pressure on estimation accuracy and team
capacity. In contrast to government projects, where regulatory agencies control
stakeholder input, the stakeholders here were end-users and product managers,
focused on user experience and feature innovation.
6.2.4 Lessons Learned:

 Accept Uncertainty in Estimation: Initial estimates in agile contexts
hardly ever remain so. The team came to accept them as tentative and created
estimation habits that could adapt. By employing relative estimation methods
such as story points and T-shirt sizing, the team retained visibility of progress
while permitting change.

 Value of Continuous Feedback: Continuous stakeholder participation
and incremental releases improved alignment with user expectations. Over time,
estimation got better as the team became clearer about the product domain and
the needs of the users, showing the capability of agile in dealing with changing
requirements.

 Desire for Estimation Discipline in Agile: Although agile
encourages flexibility, the team understood that disciplined estimation
ceremonies, including sprint planning and retrospectives, are essential to prevent
scope creep and keep delivery schedules on track. Finding a balance between
agility and estimation discipline was the key to the success of the project.
6.3 Summary of Model Application in Case Studies:
In both case studies, the components of the proposed Hybrid Cost Estimation
Framework (HCEF) could have been applied to reflect the contrasting demands
of traditional and agile environments. The government project employed
Function Point Analysis to deliver early-stage, size-based cost estimation suited
to a plan-driven approach. Conversely, the mobile app project adopted Agile-
compatible techniques T-shirt sizing and story points to support iterative
planning and dynamic re-estimation. These applications demonstrate the need
for a hybridized approach capable of adapting to evolving requirements while
maintaining estimation accuracy. The observed limitations in both cases validate
the relevance of the HCEF framework.

7. Conclusion and Future Work
7.1 Conclusion
Correct software cost estimation remains one of the most critical and difficult
aspects of software project management. This paper presents a survey of the
estimation techniques in use in both traditional and agile development
environments with specific consideration for their relative strengths and
weaknesses, including COCOMO, Function Point Analysis, T-shirt sizing, and
story point estimation. This paper also introduces and assesses a new Hybrid
Cost Estimation Framework (HCEF) that strategically combines deterministic
models of estimation with the practices of adaptive approaches in agile
estimation. Case studies in government and mobile application projects depict
real-world challenges under both methodologies and underline the requirement

http://www.thedssr.com/

Dialogue Social Science Review (DSSR)
www.thedssr.com

ISSN Online: 3007-3154
ISSN Print: 3007-3146

Vol. 3 No. 6 (June) (2025)

113

of an agile yet disciplined estimation approach. The work has found major
insights in terms of continuous re-estimation need, stakeholder engagement and
scope volatility management. The hybrid framework connects predictability of
conventional models with the adaptability of agile models to offer a more elastic
and realistic approach toward modern software projects.

7.2 Future Work
Many opportunities for future improvements are seen, though the proposed
HCEF already offers a strong foundation for estimating software effort and cost.
One major avenue would be the deployment and validation of a software product
that incorporates HCEF, dynamic user interfaces, AI-driven estimate creation,
and interaction with project management platforms like Microsoft Project or
JIRA. This would make it possible to easily validate and test, on a wide scale and
in as many application settings as possible, the framework to handle the specific
cost drivers and estimating challenges of industries such as embedded systems,
healthcare, fintech, and edtech, among others, but domain-specific calibration as
well. Another possibility of great interest is the enhancement of the AI
capabilities of HCEF, perhaps by using state-of-the-art techniques such as deep
learning, reinforcement learning, or hybrid neuro-fuzzy systems for improving
prediction performance, particularly in complex and data-rich environments.
This would raise its credibility and dependability to a greater level, working with
software companies and looking at past project datasets to benchmark the
framework with industry data. The estimating model can learn to minimize
discrepancies between expected and actual results by adding real-time feedback
loops from change logs or sprint reviews. Future improvements in HCEF will
move it closer to being an intelligent, flexible industry-relevant estimation tool.

References
[1] I. Somerville, Software Engineering, 10th ed. Pearson, 2015.
[2] M. Cohn, Agile Estimating and Planning. Prentice Hall, 2005.
[3] D. Leffingwell, Scaling Software Agility: Best Practices for Large
Enterprises. Addison-Wesley, 2007.
[4] M. Jorgensen and M. Shepperd, “A systematic review of software
development cost estimation studies,” IEEE Trans. Softw. Eng., vol. 33, no. 1,
pp. 33–53, Jan. 2007.
[5] S. Park, C. Kim, and E. Lee, “Hybrid cost estimation framework using
COCOMO and Agile,” Int. J. Comput. Sci. Inf. Secure., vol. 12, no. 9, pp. 1–7,
2014.
[6] V. T. Nguyen et al., “An improved estimation model for Agile projects using
AI and historical data,” J. Syst. Softw., vol. 180, p. 110980, 2021.
[7] R. Madachy, Software Process Dynamics. Wiley-IEEE Press, 2007.
[8] A. Trendowicz and R. Jeffery, Software Project Effort Estimation:
Foundations and Best Practice Guidelines. Springer, 2014.
[9] S. McConnell, Software Estimation: Demystifying the Black Art. Microsoft
Press, 2006.
[10] A. Abran et al., Guide to the Software Engineering Body of Knowledge
(SWEBOK). IEEE Computer Society, 2014.
[11] L. H. Putnam and W. Myers, Five Core Metrics: The Intelligence Behind
Successful Software Management. Dorset House, 2003.

http://www.thedssr.com/

Dialogue Social Science Review (DSSR)
www.thedssr.com

ISSN Online: 3007-3154
ISSN Print: 3007-3146

Vol. 3 No. 6 (June) (2025)

114

[12] M. Sharma, A. Rana, and R. Singh, “Cost estimation models in traditional
and Agile environments: A review,” Int. J. Comput. Sci. Inf. Technol., vol. 5, no.
3, pp. 4380–4384, 2014.
[13] M. Rizwan et al., “AI-based estimation models in Agile frameworks,” Int. J.
Adv. Comput. Sci. Appl., vol. 12, no. 6, 2021.
[14] A. Srivastava, “Use of artificial neural networks in software estimation,” Int.
J. Comput. Appl., vol. 124, no. 3, pp. 5–9, 2015.
[15] P. Padua, “Cost estimation in Agile using fuzzy logic,” in Proc. Int. Conf.
Comput. Intell. Comput. Res. (ICCIC), 2017.
[16] D. R. Jeffries, “Extreme programming and Agile software development
methodologies,” IEEE Softw., vol. 19, no. 6, pp. 32–37, 2002.
[17] N. Ramesh and M. Jarke, “Toward reference models for requirements
traceability,” IEEE Trans. Softw. Eng., vol. 27, no. 1, pp. 58–93, 2001.
[18] P. Berander and P. Jönsson, “A goal question metric based approach for
efficient measurement framework definition,” Int. J. Softw. Eng. Knowl. Eng.,
vol. 13, no. 5, pp. 531–547, 2003.
[19] F. Zhang et al., “An adaptive effort estimation approach using fuzzy analytic
hierarchy process,” Expert Syst. Appl., vol. 36, no. 3, pp. 6829–6837, 2009.
[20] T. Mens, “Software evolution,” IEEE Comput. Soc., vol. 39, no. 1, pp. 20–22,
2006.
[21] B. Kitchenham et al., “Systematic literature reviews in software engineering
– A systematic literature review,” Inf. Softw. Technol., vol. 51, no. 1, pp. 7–15,
2009.
[22] H. Munir, “Comparative study of Agile and traditional project
management,” Int. J. Mod. Educ. Comput. Sci., vol. 8, no. 11, pp. 1–9, 2016.
[23] M. Ali Babar, “Software architecture knowledge management: Theory and
practice,” J. Syst. Softw., vol. 82, no. 8, pp. 1239–1240, 2009.
[24] R. S. Pressman, Software Engineering: A Practitioner's Approach, 7th ed.
McGraw-Hill, 2009.
[25] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice.
Addison-Wesley, 2012.
[26] S. Misra and A. Mondal, “Identification of software development risk
factors,” J. Inf. Technol. Manag., vol. 19, no. 1, pp. 19–26, 2008.
[27] K. Beck et al., “Manifesto for Agile Software Development,” 2001. [Online].
Available: https://agilemanifesto.org
[28] International Function Point Users Group (IFPUG), Function Point
Counting Practices Manual, 2020.
[29] D. Pham and A. Ghanbarzadeh, “Multi-objective optimization using the
Bees Algorithm,” Int. J. Intell. Comput. Cybern., vol. 1, no. 2, pp. 1–18, 2007.
[30] R. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for
Software Design Smells. Morgan Kaufmann, 2014.
[31] A. Mishra and D. Dubey, “Agile estimation techniques: A comparative
study,” Int. J. Comput. Sci. Eng., vol. 6, no. 1, 2018.
[32] S. H. Kan, Metrics and Models in Software Quality Engineering. Addison-
Wesley, 2002.

http://www.thedssr.com/
https://agilemanifesto.org/

