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Abstract 
In this paper, we explore the geometric properties of the Barnes-Mittage-Leffler 
functions, focusing particularly on their q-close-to-convex behaviors. By 
examining the relationships between these functions and their geometric 
constraints, we aim to provide new insights into their applications in complex 
analysis, geometric function theory, and mathematical physics. Through this 
exploration, we also highlight potential future directions for further research, 
especially in the context of fractional calculus and its connection to the geometry 
of special functions. 
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Introduction 

Consider the class of analytic function, defined as 
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respectively. Clearly  * *0S S and  0   are well—known classes of star 
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like and close-to-convex functions respectively. 
 
Notations and Definitions 
Now we discuss some basic notations and definitions related to q  calculus. 

For  0,1 ,q the  q number   !
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And, the q  factorial   !
q

  is represented as 
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Consider  b   q    ( | q |   )         { }  Then the q -shifted factorial 

 b  q     is represented as 
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 Then q-Gamma function is stated by  
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Now the q -derivative operator 
q

D  of a function   is represented by 
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       exists.  
 

The class of 
,q g [1] 

The class of 
,q g  i.e. q close-to-convex function is defined by using the q

derivative operator as: 
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The class 
,q g   becomes the class   , when q      . 

Special functions play a crucial role in various branches of mathematics, physics, 
and engineering due to their ability to describe complex phenomena in a compact 
and elegant manner. These functions, often arising as solutions to differential 
equations or integral representations, are indispensable tools for tackling 
problems in areas such as complex analysis, geometric function theory, and 
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mathematical physics. In geometric function theory, these functions have made 
significant contributions, especially in the solution of Bieber Bach conjecture[2]. 
A vast body of literature explores the geometric properties of various types of 
special functions [3-5]. For example, Owa and Srivastava [6] investigated the 
univalence and starlikeness of hypergeometric functions. Srivastava and Dziok 
[7, 8] introduced a convolution operator using generalized hypergeometric 
functions to study specific classes of univalent functions. Srivastava [9] also 
introduced a convolution operator with the Fox-Wright function to examine 
certain classes of univalent functions. Meanwhile, Baricz [10, 11], Orhan and 
Yagmur [12] as well as M.U.Din [1], explored the properties of Bessel, Struve, and 
Dini functions, respectively. 
By exploring the Barnes-Mittage-Leffler functions' q-close-to-convex behaviors 
and their relationship to geometric constraints, this paper aims to highlight their 
importance and potential for future research, particularly in the context of 
fractional calculus and the geometry of special functions. Through continued 
investigation, these functions may lead to further advancements in both 
theoretical and applied mathematics. 
 
Important Lemmas                           
Lemma 3.1[13]:  Let        and         ,     and (    be a sequence of 
natural numbers such that 
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Lemma 3.2[14] 
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Main Results 
Geometric Properties of Barnes Mittage-Leffler Functions 
The Barnes-Mittag-Leffler function is defined as: 
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Theorem 4.1 
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To prove that Barnes-Mittage-Leffler function is q -close-to-convex, we consider 
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1 1B  . 

It can easily observe that 1 1B   and all values of nB are positive for all positive 
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Furthermore, from Lemma 3.1, we have 
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Next we will prove that 
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integers. 
Furthermore, from Lemma 3.2, we have 
Put 3n   in (1) 
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Next we prove that 
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