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Abstract

In this article, we introduce and examine new integral operators involving four
parametric Wright functions. These operators extend and generalize existing integral
operators found in the literature. We explore several geometric properties of these new
operators, including univalency and convexity. Our discussion focuses on how these
properties manifest in the context of four parametric Wright functions.

Keywords: Convex Function, Star like Function, Univalency, Close to Convex
Function.

Introduction

The four parametric Wright function

0 m

aﬁcd Z?T c+ma) (d+mﬂ),C,deD,a,ﬁeD. (1.1)
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was introduced by E. M. Wright for «,f>0. The series defined in equation (1.1)

converges absolutely and it is an entire function [1-3]. The wright function can be seen
as a special case of four parametric wright function. The Wright function

il'l“( ™ g>—l,77€D, (1.2)

1=0

was introduced by E. M. Wright [4] in 1933 and has since been applied in various fields,
including the partitions of asymptotic theory, also the theory of Hankel type integral
transformation and operational calculus of Mikusinski. Wright functions played a role in
solving pde’s of fractional order with corresponding Green functions being expressed in
terms of Wright functions [5, 6]. Mainardi [7] used Wright functions to solve the
fractional diffusion wave equation. Luchko et al. [1, 8] derived scale invariant results of
pde’s (partial differential equations) of fractional order in form of Wright functions. In
2022 M. U. Din [9] determined the partial sums of four- parametric Wright function.

Let A be the class having the functions tin the form of
try=r+> cr', (1.3)
1=2

analytic contained in open unit disc U ={r||r| <1}.

Wright function, especially in its four parametric form, is defined as a series that
generalizes several well-known special functions, including the generalized
hypergeometric function and the Mittag-Leffler function. Recently, numerous
researchers have investigated various geometric belongings, such as univalency,
convexity, star likeness as well as close-to-convexity of special functions. Studies have
been conducted on geometric properties of hypergeometric functions [10, 11], Bessel
functions [12], Struve functions [13], Lommel functions [14].This body of work led
Sourav Das and Khaled Mehrez [15] to explore the geometric properties of four
parametric Wright function. we will derive some sufficient conditions by utilizing
inequalities related to four parametric Wright functions.

We consider the following normalization of \/\/ v d) (2)
(v,d) 2 I'cl'e h+l
(e (2) = Z £

5 (Cc+ 1) (e +kv)
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I'cl'e /N
“T(c+(h-D)u)(e+(h-1v)

s

=7+

=
||

We requisite following lemmas to verify our key results:

Lemma 1[16]:

If function g(z)=z+c,z° +...+¢,2" +... is analytic in U also

1>22c,>...2nc,...20,

Or

1<2c,<..<nc,..<2

is close-to-convex regarding to convex function z — —log(l-z)

Lemma 2 [14]:

If function g(z) =z+d,z* +...+d,, ,z*"" +... analytic in U also if

1>3d,>..>(2n+1)d,, ,...>0,

Or

1<3d,<...£(2n+1)d,, ,...<2.

Then g(z) is univalent in U .

Main Results

Theorem 2.1: If c,e, 1,v e[l "with inequality
hr'(c+hu)C(e+hv) > (h+1)(c+(h—1) ) (e +(h-1)v),

Then
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2—W (o),

(u.0)

is close to convex regarding to convex function —log(1-z).

Proof:
Consider
Ve) s & I'cl'e 5h
2)=12+ Z -
W .02 ; e+ -1 (e+(h-1v)
Here,

A I'cle
" e+ (h-1)u)T(e+(h-1)v)’

We have 4, , >0 forall h>2.

For | =2,

I'cl'e
I'(c+u)'(e+Vv)

a =

<1.
Now, we have
Q4 =h4, ,—(h+1)4,.

Tcle Tcle
~h —(h+2)
T(c+h-1)u)(e+h—1)v) T(c+h)C(e + hv)

Tere { h ~ (h+1) }
I(c+(h-1))C(e+(h-1)v) T(c+hu)C(e+hv)
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hr'(c +h)T(e+hv) — (h+ )T (c+ (h—1) ) T(e+ (h —1)v)}

= Fcl"e{
I'c+((h-2))r'e+(h-DYv)I'(c+hu)'(e+hv)

Here
I'c>0,Te>0
rc+h-Yu)>0,
I'e+(h-1v)>0,
r'(c+hu)>0

and

I'(c+hv)>0,

Under the conditions on parameters, for h>2. In view of Lemma 2.1, we have to show
that Q4, >0. Here we observe that Q4 is positive if,

hI'(c+hw)'(e+hv) > (h+1)I'(c+(h-1) )T (e+(h-1)v),
for all h> 2.

Thus \\/ 8’2(2) is close to convex regarding to convex function (—log(1-2)).

Theorem 2.2: If c,e, x,v ell "with inequality
(2h—D)(c+hw)T(e+hv) > (2h +DI(c + (h—1) )T(e + (h—1)v),
then
7 W 22,

. . . 1, 1+7
is close to convex regarding to convex function (E log 1 Aj.
-2
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Proof: Let

=7+ z Azhflzzh_l
h=2
Here
A I'cl'e
Api=28y, = .
I'c+(h-2)u)r'(e+(h-1v)
Therefore, we have
4 Lcre
I'(c+u)'(e+v)

<1,
and A, ,>0forall h>2.
Firstly we will show that {(2h-1) ehfl}m22 is a sequence of decreasing functions.

For this consider
(2h-1)4,,-(2h+1)a, =0

_ (2h—1)T'cle ~ (2h+1)Tcre
T T(c+(h-1)u)T(e+(h-1v) T(c+hu)(e+hv)’

Tere { (2h-1) _ (2h+]) }
rc+(h-1Dul(e+(h-1v) T(c+hu)l(e+hv)

= Fcl“e{
I'c+(h-))r'(e+(h-Yv)I'(c+h)'(e+hv)

Here

(2h—)T(c+h)T(e+hv) — (2h+)T(c + (h—1) )T (e + (h —1)v)}
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I'c>0,Te>0
I'c+(h-Yu)>0,
r'e+(h-1v)>0,
I'(c+hu)>0
And
I'(e+hv)>0,
Under the conditions on parameters, for h> 2. For
2h-)r(c+hg)r(e+hv) > (2h+1)r(c+(h-1)u)T'(e+(h-1)v),
we observe that

(2h-1)4,,—-(2h+1)4, >0 forall h>2.

Hence, the sequence {(Zh—l)bhfl}m is decreasing sequence. By using Lemma 2.2, we

A v N . . . 1 1+7
have 7\\/ El'i))(zz) is close to convex regarding to function (E log 1 AJ.
L —7
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