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Abstract 
Topological indices are numerical invariants that capture the structural 
properties of graphs, playing a crucial role in quantitative structure-activity 
relationships (QSARs) by linking molecular structures to their biological 
activities. This research investigates Bi-distance degree-based topological 
descriptors, such as the Bi-distance atom bond connectivity index, Randić index, 
geometric arithmetic index, hyper Zagreb index, forgotten index, first and second 
Zagreb indices, Zagreb augmented index, and redefined Zagreb indices, applied 
to sheet oxide network. By partitioning edge sets based on degree and 
cardinality, these indices are computed using combinatorial methods. The 
findings reveal that the Zagreb indices, atom bond connectivity index, and 
forgotten index can be effectively determined using the Bi-distance approach, 
offering a novel perspective for analyzing molecular structures. This research 
aims to provide insights into the biological activities and physical properties of 
oxide molecule, with potential applications in pharmaceutical and biological 
networks. The study highlights the significance of topological indices in graph 
theory for examining the structural characteristics of chemical compounds, 
contributing to a deeper understanding of their properties and behaviors. 
 
Keywords: bi-distance edges; molecular structure; topological index; Randić 
index; Zagreb index; forgotten index; sheet oxide; structure analysis 
 

Introduction 
Leonhard Euler [1], a prominent Swiss scientist, is credited with founding graph 
theory through his solution to the "Königsberg Bridge Problem" [2] in 1735. This 
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problem involved seven bridges over a river, making it impossible to cross each 
bridge only once. Euler modeled the land masses as vertices and the bridges as 
edges, analyzing the graph's properties to solve the problem, which became the 
first theorem in graph theory [3]. Although the first formal text on graph theory 
was published much later in 1936, the field has since become a vital area of 
mathematics, applied across diverse disciplines such as computer science, 
chemistry, and logistics. Graphs, represented as points (vertices) connected by 
lines (edges), are widely used to model real-world scenarios, such as social 
networks or communication systems [4]. 
A graph is defined by two sets: vertices and edges, where each edge connects one 
or two vertices. The distance between vertices in a simple, connected graph is 
denoted by d, and the degree of a vertex v is represented by deg(v). This article 
focuses on simple, connected, and planar graphs [5]. 
Graph theory has extensive applications, including nano-chemistry, computer 
networks, navigation systems like Google Maps, and molecular structure 
analysis. In mathematical chemistry, chemical graph theory uses graphs to 
represent chemical compounds, combining chemistry and graph theory to study 
the physical and chemical properties of substances [7]. Biological networks also 
utilize graph theory to identify therapeutic targets by analyzing protein or gene 
interactions [8]. Additionally, graph theory aids in studying RNA and DNA 
structures and is a growing tool in operational research, logistics, and economics 
[9]. 
Chemical graph theory [10] examines graphs as mathematical tools to represent 
relationships between elements, with vertices (nodes) and edges (connections). 
These graphs can be directed or undirected, forming a key part of discrete 
mathematics. Topological indices (TIs) [11] are numerical values derived from 
graph structures, used to correlate chemical properties with molecular graphs. 
These indices are crucial in fields like chemical engineering and pharmaceutical 
research, as they predict physicochemical properties without extensive 
experimentation. TIs are categorized into degree-based, eccentricity-based, 
distance-based, and ev-degree-based indices [13]. 
Molecular graphs represent chemical compounds, with vertices as atoms and 
edges as bonds. Topological indices provide numerical descriptors for chemical, 
biological, and physical properties, aiding in Quantitative Structure-Property 
Relationships (QSPR) and Quantitative Structure-Activity Relationships (QSAR) 
[14,15]. Traditional degree-based TIs focus on single distances, but newer 
methodologies, such as distance-based and eccentricity-based indices, have 
expanded their applications. This article introduces a novel "Bi-distance" strategy 
[16], combining two edges to form a bi-distance edge, enhancing the utility of TIs 
like the Wiener index. 
 
Materials and Methods 
Randić Index 
The Randić index [17,18], initially introduced by Milan Randić, is a degree-based 
index used to measure the branching characteristics of a graph. It was once 
known as the molecular connectivity index, but it is now commonly known as the 
Randić index. By using the Randić index, this index is utilized to assess how 
much a molecule's carbon atom skeleton has been stretched. 
The universal Randić index, and the Bi-distance Randić index are represented as, 
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Atom Bond Connectivity Index 

Atom bond connectivity index [19] is presented by Estrada et al. and it’s 
Bi-distance Atom Bond Connectivity index are stated as, 
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Geometric Arithmetic Index 

Geometric arithmetic index [20] was computed by Furtula and Vukicevic 
and the Bi-distance Geometric arithmetic index are represented as: 
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Due to its comprehensive nature and improved predictive capabilities, the GA  
index has become a valuable tool in the field of cheminformatics. It allows 
researchers to assess the bioactivity of chemical compounds and make informed 
predictions based on their structural characteristics. 

Second and First Zagreb Index 

Second and First Zagreb index [21] was computed by Gutman et al. and the Bi-
distance second and first Zagreb index is stated as: 
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Both the indices one and two for Zagreb are part of a family of TI that describe 
chemical structures and have supplication in various areas of chemistry, 
bioinformatics, and graph theory [22].  

Hyper Zagreb Index 

Hyper Zagreb index [23] was computed by Shirdel et al. and the Bi-distance 
Hyper Zagreb index are defined as: 
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The Zagreb indices are expanded upon by the hyper Zagreb index one that 
considers the contributions of higher-order neighbors of vertices in a graph. It 
provides additional information about the connectivity and distances between 
vertices. 

Forgotten Index 

Forgotten index [24] were presented by Gutman and Furtula and its Bi-distance 
forgotten index are defined as, 
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Augmented Zagreb Index 

Augmented Zagreb index [25] were introduced by Furtula et al. and the Bi-
distance (AZ) index are stated as, 
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The augmented Zagreb index is a graph invariant that extends the concept of the 
Zagreb indices by incorporating the weights of vertices or edges into the 
calculation. 

First, Second and Third Redefined Zagreb Index 

Redefined Zagreb indices of First, Second, third type were presented by Ranjini 
et al. and its Bi-distance indices is defined as,  



780 

 

Dialogue Social Science Review (DSSR) 
www.thedssr.com 
 
ISSN Online: 3007-3154 
ISSN Print: 3007-3146 
 

Vol. 3 No. 2 (February) (2025)  

 

   

1

2

3

( (
( )

( (

( (
( )

(

.

)
.

)

)
.

)

) ) )

(

( ) ( ( ( (

d d
RZ G

d d

d d
RZ G

d d

RZ G d d d d

 

 

 

   
  

   

   
  

   

      







G

G

G

 

   

1

2

3

( (
( )

( (

( (
( )

(

.

(

( ) ( ( (

.

(

)

)

)
.

)

() ) )

RZ G

RZ G

RZ G

 

 

 

   
  

   

   
  

   

      







G

G

G

B B
B

B B

B B
B

B B

B B B B B

 

 
Bi-distance Edge Partitions 
This study employs edge partitioning to divide bi-distance edges of Sheet Oxide 
and Sheet Silicate into three packets (Tables 1-2). Various methods, including 
vertex degree, edge partitioning, and graph analytical approaches, are used to 
analyze the networks. Computational tools, such as MATLAB and Mathematica, 
facilitate calculations and visualization of results. ChemDraw is utilized for 
drawing chemical structures. Degree-based topological descriptors [29] are 
applied to Chain Oxide Molecular Networks in the subsequent section. 

 
Figure 1: Sheet Oxide Network 5( )OX                

Results and Discussion 
In this section, the results of the several Bi-distance topological indices of Sheet 

oxide ( )nOX  and Sheet silicate ( )nSL networks have been discussed. 
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Results for Sheet Oxide Network ( )nOX  

The sum of all edges is 
224n , where n  is also applicable. These indices 

were computed using the edge partition method, which groups the edges 
according to the sum of the degrees at which the connected vertices are 
connected. 

Theorem 1: Consider 
1G  be the Sheet Oxide network, then its Bi-distance 

Randić Index is, 
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Proof: 

Consider 
1G  to be the Sheet Oxide ( )nOX network’s Molecular graph.  

Table 1: Bi-distance Edge Partitions for Sheet Oxide ( )nOX Network 
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Bi-distance Randić Index is, 

 
1 1

) ) , 1, 1, , .
2

( (
2

(GR


 



 

       
G

B B B  

Bi-distance Randić Index of the Chain Oxide network can be calculated as, 
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Theorem 2: If 1G  be the Sheet Oxide network, then its Bi-distance atom bond 

(ABC)index is, 
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Bi-distance Atom Bond Connectivity Index of the Chain Oxide Network can be 
calculated as, 
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Theorem 3: The Bi-distance Geometric Arithmetic Index for Sheet Oxide 
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Theorem 4: If 
1G  be the Sheet Oxide network, then its Bi-distance first and 

second Zagreb indices are, 
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Proof: 

Consider 1G  to be the Sheet Oxide ( )nOX network’s Molecular graph. Bi-distance 

first Zagreb Index is, 

 1 (( ) ) .(GM
 
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G
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Bi-distance First Zagreb Index of the Sheet Oxide Network can be calculated as, 
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Bi-distance second Zagreb Index is 
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Bi-distance second Zagreb Index of the Sheet Oxide Network can be calculated 
as, 
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Theorem 5: Consider 1G  be the Sheet Oxide network, then its Bi-distance 

Hyper Zagreb Index is, 

 1
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Proof: 

Consider 1G  to be the Sheet Oxide ( )nOX network’s Molecular graph. Bi-distance 

Hyper Zagreb Index is, 
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2
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 

   
G

B B B  

Bi-distance Hyper Zagreb Index of the Sheet Oxide Network can be calculated as, 
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Theorem 6: Consider 1G  be the Sheet Oxide network, then its Bi-distance 

Forgotten Index is, 

 1( ) 96 8 3 .F G n n B  

Proof: 

Consider 1G  to be the Sheet Oxide ( )nOX network’s Molecular graph. Bi-distance 

Forgotten Index is, 
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Bi-distance Forgotten Index of the Sheet Oxide Network can be calculated as, 
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Theorem 7: The Bi-distance Augmented Zagreb Index for Sheet Oxide 

network, if 1G  be the graph is, 

 2

1

16
( ) 256 148 37 .

9
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Proof: 

Consider 1G  to be the Sheet Oxide ( )nOX network’s Molecular graph. Bi-distance 

Augmented Zagreb Index is, 
3
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Theorem 8: Suppose 1G  be the Sheet Oxide network then its Bi-distance First, 

Second and third Redefined Zagreb Indices are, 
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Proof: 

Consider 1G  to be the Sheet Oxide ( )nOX network’s Molecular graph. Bi-distance 

First, Second and third Redefined Zagreb Indices are, 
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Bi-distance First, Second and third Redefined Zagreb Indices of the Sheet Oxide 
Network can be calculated as, 
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Table 3: Comparison of Topological Indices for Sheet Oxide Molecular Structure 
N 

1 1( )R GB  1 1( )R GB  
2

11 ( )R GB  
2

11 ( )R G


B  

1                        

2                           
3                            
4                              
5                              
6                               
7                               
8                                
9                                
10                                
 
Table 4: Comparison of Topological Indices for Sheet Oxide Molecular Structure 
N 

1( )ABC GB

 
1( )GA GB

 
1 1( )M GB

 
1( )HM GB

 
1( )F GB

 
1( )AZI GB

 
1 1( )RZ GB

 
1                                      

2                                     

3                                              

4                                               

5                                            

6                                                

7                                                

8                                             

9                                                     
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Conclusion 
Graphics effectively illustrate chemical composition and database relationships. 
Graphs are a crucial tool in science and engineering for visualizing complex 
phenomena. This study explores topological indices, examining variables linked 
to chemical structure graphs. Focusing on sheet Oxide network, it investigates 
how different formulations of degree-based topological invariants impact results. 
The findings can enhance understanding of biological activities and physical 
characteristics in these molecular structures, with applications in materials 
science, environmental remediation, and medicine. 
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